投稿指南
一、本刊要求作者有严谨的学风和朴实的文风,提倡互相尊重和自由讨论。凡采用他人学说,必须加注说明。 二、不要超过10000字为宜,精粹的短篇,尤为欢迎。 三、请作者将稿件(用WORD格式)发送到下面给出的征文信箱中。 四、凡来稿请作者自留底稿,恕不退稿。 五、为规范排版,请作者在上传修改稿时严格按以下要求: 1.论文要求有题名、摘要、关键词、作者姓名、作者工作单位(名称,省市邮编)等内容一份。 2.基金项目和作者简介按下列格式: 基金项目:项目名称(编号) 作者简介:姓名(出生年-),性别,民族(汉族可省略),籍贯,职称,学位,研究方向。 3.文章一般有引言部分和正文部分,正文部分用阿拉伯数字分级编号法,一般用两级。插图下方应注明图序和图名。表格应采用三线表,表格上方应注明表序和表名。 4.参考文献列出的一般应限于作者直接阅读过的、最主要的、发表在正式出版物上的文献。其他相关注释可用脚注在当页标注。参考文献的著录应执行国家标准GB7714-87的规定,采用顺序编码制。

金融科技十大技术趋势:隐私计算区块链重点,

来源:航空计算技术 【在线投稿】 栏目:综合新闻 时间:2022-01-07 01:56
作者:网站采编
关键词:
摘要:金融科技圈的技术走向该如何看? 今天,北大光华-度小满金融科技实验室发布了「2022全球金融科技十大技术趋势」,涵盖隐私计算、大模型、多模态学习、数字孪生等多个前沿领域。

金融科技圈的技术走向该如何看?

今天,北大光华-度小满金融科技实验室发布了「2022全球金融科技十大技术趋势」,涵盖隐私计算、大模型、多模态学习、数字孪生等多个前沿领域。

刚走过规模化应用元年的隐私计算,今年将如何助力金融业数据生态建设?

大模型元宇宙多模态……这些热议技术与金融产生怎样的联动?

以及又有哪些前沿技术,已经在给行业创造价值?

现在就带你一文看尽年度金融科技十大技术展望,快速概览如下:

趋势一:“数据可用不可见”,隐私计算助力金融业数据生态建设

隐私计算能够实现数据在流通与融合过程中的“可用不可见”。在数据互联互通需求高涨与数据安全政策不断出台的背景下,互联网巨头、科技公司及金融机构等纷纷入局隐私计算产业。2021年,被业界称为隐私计算规模化应用元年

作为数据密集型行业,金融业对数据的互联互通需求迫切,是隐私计算技术的主要落地行业。隐私计算能够在保障数据安全的前提下,助力金融业数据流通,被主要应用于信贷风控、精准营销、反欺诈、移动支付人脸识别等场景。

2021年,各国持续加强数据安全立法相关工作,例如,中国陆续出台《数据安全法》《个人信息保护法》《征信业务管理办法》等一系列数据法规,韩国发布“MyData”相关立法和数据服务指南,强化数据保护等。

在此背景下,伴随着隐私计算行业标准的陆续发布及相关技术的不断迭代升级,2022年,隐私计算将在金融数据生态建设方面发挥更大作用。

趋势二:头部企业加码,大模型成全球AI技术竞争焦点

随着算法不断创新、算力逐渐增强及数据的海量爆发,预训练大模型已经成为人工智能的新方向。大模型的基本训练方法是自监督学习,依托复杂的预训练目标、庞大的模型参数,能够将丰富的知识存储到大量参数的隐式编码中,可以完成面向不同场景下的不同任务。大模型提高了AI通用性,有助于解决AI应用场景碎片化的问题。

自2020年OpenAI发布NLP(自然语言处理)预训练模型GPT-3以来,大模型在全球范围迎来爆发,成为新一轮人工智能技术竞争的焦点。2021年,谷歌发布万亿级模型Switch Transformer,百度发布鹏城-百度·文心知识增强大模型,华为发布盘古大模型……大模型开始从自然语言处理向更多领域拓展。

在应用落地方面,目前大模型仍处于各大机构的积极探索阶段。随着技术性能的不断提升、产业模式的不断成熟及监管体系的逐渐建立,大模型必将掀起新一轮的人工智能应用浪潮。

趋势三:“元宇宙”助推下,VR/AR产业兴起新一轮发展浪潮

伴随产业链各环节的逐渐成熟,叠加疫情推动“零接触”需求的上升,VR/AR技术在经历热炒、低谷、复苏后,进入快速发展阶段。在“十四五”规划中,中国更是将“增强现实/虚拟现实”列入数字经济重点产业之一。

2021年,“元宇宙”概念大火。VR/AR能够带来人机交互新方式,被视为元宇宙与现实世界的硬件接口。在元宇宙的助推下,VR/AR产业迎来了新一轮发展机遇。根据IDC预测,2021年全球VR产品同比增长约为46.2%,2020-2024年复合增长率约为48%,2025年全球AR设备出货量将达到2440万部。

2022年,苹果有望发布首款MR产品,Oculus或将发布Quest Pro,打造下一个VR旗舰款,索尼有望发布新一代PS VR头显。

趋势四:多模态学习受青睐,催生人工智能多元化应用场景

多模态学习最早始于1970年,经过几个阶段的发展,2010年后全面步入深度学习阶段。最早的多模态研究应用之一是视听语音识别,通过融合视频和声音两个模态,多模态学习开始表现出其优秀的学习能力。

2020年以来,面对“戴口罩”“零接触”的疫情常态化防护需求,以及指纹、人脸等单一生物特征信息频频泄露的个人隐私风险,多模态的解决办法开始受到市场青睐。多模态生物识别凭借其准确度高、安全性强以及应用场景广的特点,正不断成为市场主流,被逐渐应用于金融、公安、出入境、安检以及教育等多个场景。

2022年,在加强个人信息保护的主旋律下,多模态生物识别融合多种生物特征的优势,可以灵活地选择合适的技术融合方式和决策权重,能够适应不同应用场景下的需求变化,将有更多的落地应用场景。

文章来源:《航空计算技术》 网址: http://www.hkjsjszz.cn/zonghexinwen/2022/0107/418.html



上一篇:长龙航空首个自主研发技术获国家发明专利
下一篇:丰田格兰维亚四个独立航空座椅,2.8T柴油和3.5

航空计算技术投稿 | 航空计算技术编辑部| 航空计算技术版面费 | 航空计算技术论文发表 | 航空计算技术最新目录
Copyright © 2021 《航空计算技术》杂志社 版权所有 Power by DedeCms
投稿电话: 投稿邮箱: